

ORTUS®

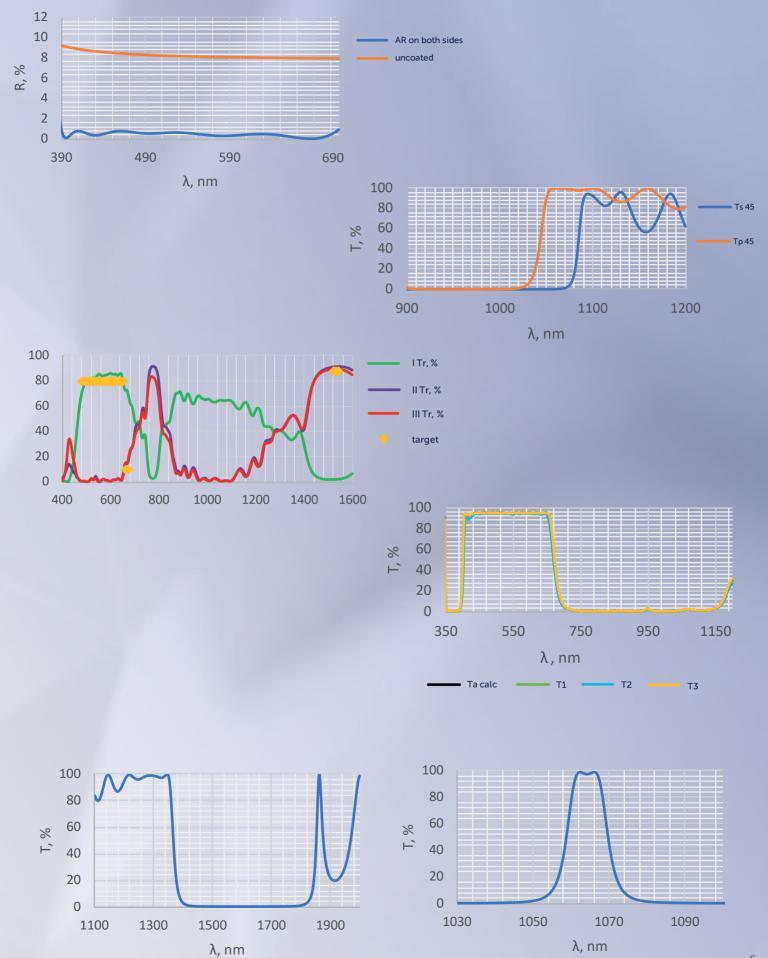
Vacuum Coating Systems with Electron-Beam Evaporation Technology

II Content

About I-Photonics

I-Photonics long year experience in working on Ion Beam technology and Thin Film physics and the related R&D works on thin film coatings and coating hardware developments testimony the importance of defining and improving continuously coating processes and provided over the years a consistent process portfolio which defines I-Photonics attractive as an and competitive solution provider.

Following the global market demands we developed Magnetron Sputtering Technology (MS, RMS, PARMS), Diamond Like Carbon Technology for IR optics (DLC by PECVD), E-Beam Evaporation (IBAD), Ion Beam Sputtering (IBS, RF IBS) for precision optics.

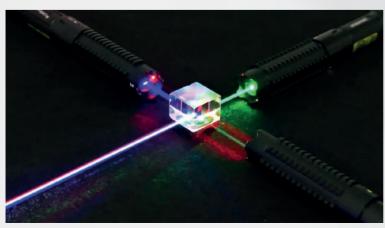

Being focused on optical coatings we developed automatic optical process control systems OCP BroadBand an OCP SingleWave that allow to make high precision multilayer optical coating for UV, VIS, NIR, Mid IR ranges with high yield. Ongoing updates on behalf of the requirements for coatings from the customer demanded from us incessant R&D, which lead to a constant improvement of our equipment and defined the role of the entire company not only as a developer of equipment, but more as a developer of coating solution provider.

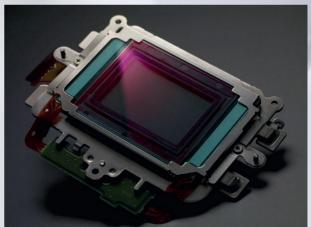
The accumulated experience in processes and methods of thin films coatings helps I-Photonics to be specialized in coating services as well. It also positioned I-Photonics as company which provides technological support for each customer and shares the knowledge in thin films.

With each customer our aim is to possibly establish long-term cooperation based on our experience and continuous improvements as a solution provider.

ORTUS®

Vacuum systems with electron-beam evaporation technology

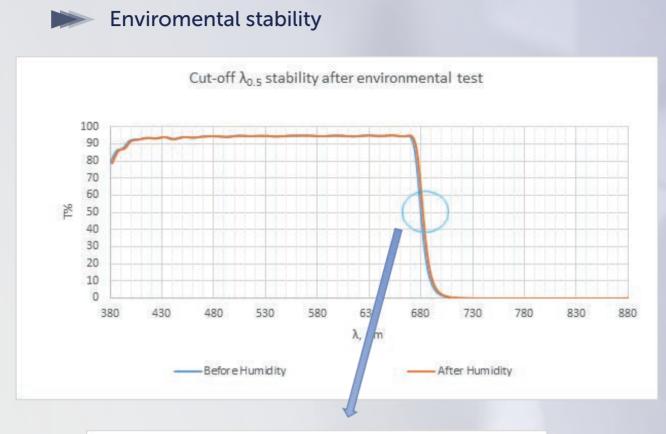

- Visible and infrared optics
- Lasers
- Customized application

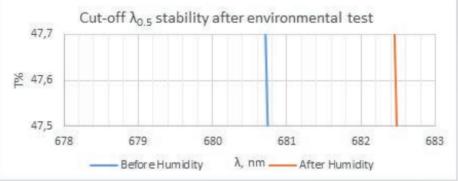

To be used in:

- Sensors
- Optical systems for objectives
- Microscopes
- ► Telescopes
- Laser optics
- ► R&D



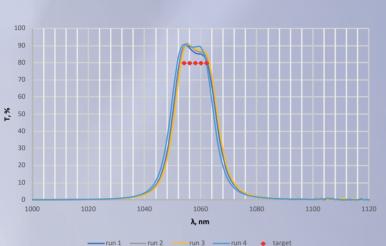
SWP 680 process stability

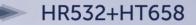

Batch to batch stability

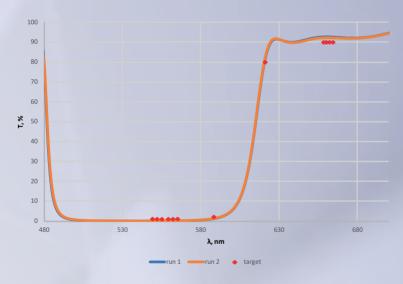


Coating	
Tav 420-670 nm	≥94%
Tabs 420-670 nm	≥91.5%
Slope = (λ 90% - λ 10%)	Less then 20 nm
Blocking range	700-900 nm, OD 2.5
Cut off $\lambda_{0,5}$	680 <u>+</u> 2 nm
Batch to batch stability	<u>+</u> 0,3%
Surface quality	60-40
Substrate	BK7, Ø50.8x1 mm

Environmental test	
Passed test	Test condition
Humidity	24 Hrs. exposure at RH 80% and 90℃


SWP 680 process stability

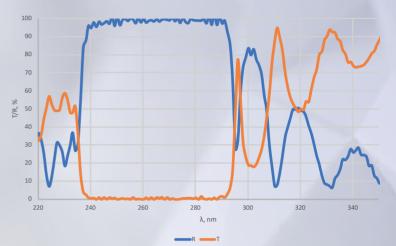

Coating	
Tav 420-670 nm	≥94%
Tabs 420-670 nm	≥91.5%
Slope = (λ 90% - λ 10%)	Less then 20 nm
Blocking range	700-900 nm, OD 2.5
Cut off $\lambda_{0,5}$	680 <u>+</u> 2 nm
Batch to batch stability	<u>+</u> 0.3%
Surface quality	60-40
Substrate	BK7, Ø50.8x1 mm


Environmental test	
Passed test	Test condition
Humidity	24 Hrs. exposure at RH 80% and 90°C

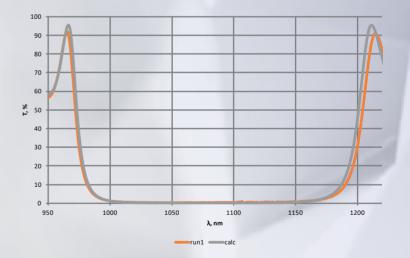
Bandpass filter 1064 nm

Coating		
λcwl	1064 nm	
FWHM	≤ 15 nm	
Tr max (without back side AR)	>89%	
Blocking range	400-1200 nm, OD<3	
Surface quality	40-20	
Durability	MIL-C-48497A	
Substrate	ВК7	
Dimensions	Ø 2 inch	

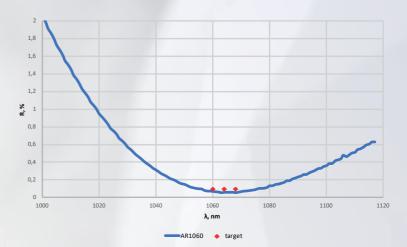
Coating		
Wavelength range	500-660 nm	
Tr λ 621 nm	> 70%	
Tr λ 658 nm (without back side AR)	>90%	
Blocking range	500-566 nm, OD<3	
Surface quality	40-20	
Durability	MIL-C-48497A	
Substrate	ВК7	
Dimensions	Ø 2 inch	

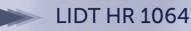

LWP 1380 (for range finders)

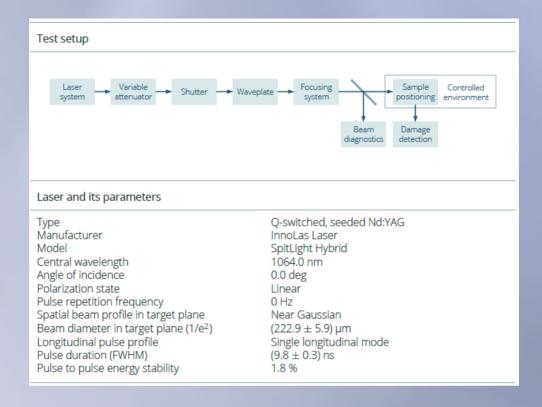
	Coating		
	λςωί	1380 <u>+</u> 20 nm	
	Slope = (λ (80% of Tpeak)- λ cwl)/ λ cwl	<u>≤</u> 2%	
	Blocking range	400-1300, OD<3	
	Tr av, % λ= 1480-1540 nm	>98%	
	Surface quality	40-20	
00	Durability	MIL-C-48497A	
	Substrate	BK7	
	Dimensions	Ø 10 mm	


HR 266 nm

Coating		
λcwl	266 nm	
Rλcwl	R>99.88%	
Angle	α=0°	
Surface quality	20-10	
Durability	MIL-C-48497A	
Substrate	Fused silica	
Dimensions	Ø 2 inch	


▶ HR 1064


Coating		
λcwl	1064 nm	
T, R λcwl	T<0.15%, R>99.8%	
Angle	α=0°	
Surface quality	20-10	
Durability	MIL-C-48497A	
Substrate	Fused silica	
Dimensions	Ø 2 inch	



🗩 AR 1064

Coating	
λcwl	1064 nm
Rλcwl	R<0.08%
Angle	α=0°
Surface quality	10-5
Durability	MIL-C-48497A
Substrate	Fused silica
Dimensions	Ø 2 inch

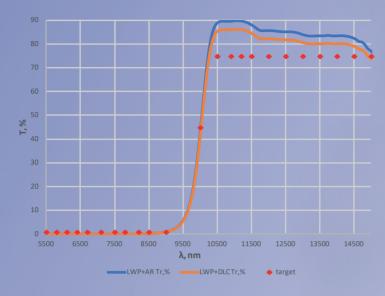
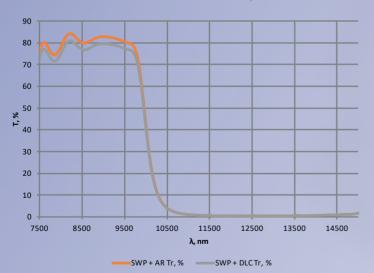


Table	Table 1: Estimated LIDTs for sample Mirror 1064.		
Test mode	Threshold (Color mode)	Threshold (Catastrophic)	
2-on-1	3.54 ^{+0.40} _{-0.43} J/cm ²	88.5 ^{+10.0} _{-11.4} J/cm ²	

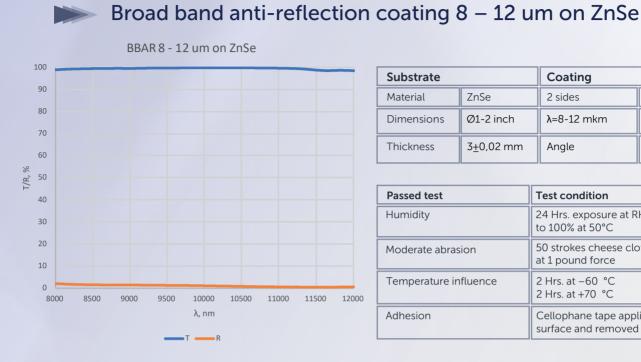
	160	Wavelength: Pulse duration (FWHM):	1064 nm (9.8 ± 0.3) ns	 Image: Image: Im
,	140		0 Hz 0 deg Linear	
	120	_Beam diameter (1/e ²):		
	100		T	
	80			
	60			
	40			
	20			
	0		*	

Infrared coatings


Ge long wave pass filter 10 um

Substrate		Coating	
Material	Ge	λcwl	10 µm <u>+</u> 50 nm
Dimensions	Ø1-2 inch	Slope = (λ (80% of Tpeak)- λ CWL)/ λ CWL	<u>≤</u> 2%
Thickness	1-2 mm	Blocking 5.5 - 9 µm	less than 1% (or OD>2)
		Min Tr% 10.5 µm to 15 µm	>75%
		Options:	2 nd side BBAR or DLC coated

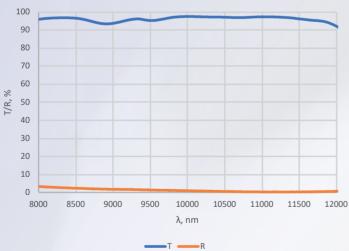
Passed test	Test condition
Humidity	24 Hrs. exposure at RH 95% to 100% at 50°C
Severe abrasion	20 strokes eraser with a force of 2 to 2.5 pounds
Moderate abrasion	50 strokes cheesecloth with a force of 1 pound
Temperature influence	2 Hrs. at -60°C 2 Hrs. at +70°C
Adhesion	Cellophane tape applied to the coated surface and removed quickly
Salt spray (fog)	24 Hrs. salt spray
Salt solubility	24 Hrs. immersion in salt water (44.7 gr per liter)
Aging effect	Wavelength shift after about 6 months


Ge short wave pass filter 10 um

Substrate		Coating	
Material	Ge	λcwl	10 µm <u>+</u> 50 nm
Dimensions	Ø1-2 inch	Slope = (λ (80% of Tpeak)- λ CWL)/ λ CWL	≤ 2%.
Thickness	1-2 mm	Blocking 10.7 - 15 µm	less than 1% (or OD>2)
		Min Tr% 7.5 – 9.7 µm	>70%
		Options:	2 nd side BBAR or DLC coated

Passed test	Test condition
Humidity	24 Hrs. exposure at RH 95% to 100% at 50°C
Severe abrasion	20 strokes eraser with a force of 2 to 2.5 pounds
Moderate abrasion	50 strokes cheesecloth with a force of 1 pound
Temperature influence	2 Hrs. at -60°C 2 Hrs. at +70°C
Adhesion	Cellophane tape applied to the coated surface and removed quickly
Salt spray (fog)	24 Hrs. salt spray
Salt solubility	24 Hrs. immersion in salt water (44.7 gr per liter)
Aging effect	Wavelength shift after about 6 months

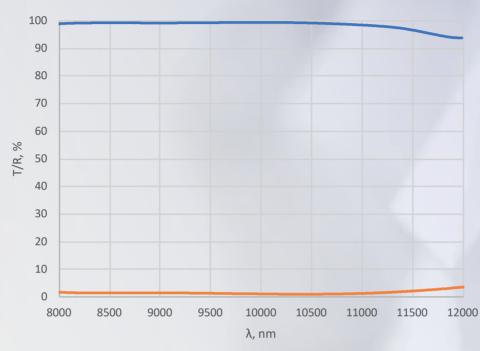
Infrared coatings



Substrate		Coating	
Material	ZnSe	2 sides	
Dimensions	Ø1-2 inch	λ=8-12 mkm	Tav=99.57% Rav=1.10%
Thickness	3 <u>+</u> 0,02 mm	Angle	α=0°

Passed test	Test condition
Humidity	24 Hrs. exposure at RH 95% to 100% at 50°C
Moderate abrasion	50 strokes cheese cloth at 1 pound force
Temperature influence	2 Hrs. at -60 °C 2 Hrs. at +70 °C
Adhesion	Cellophane tape applied to the coated surface and removed quickly

Broad band anti-reflection coating 8 - 12 um on IG6

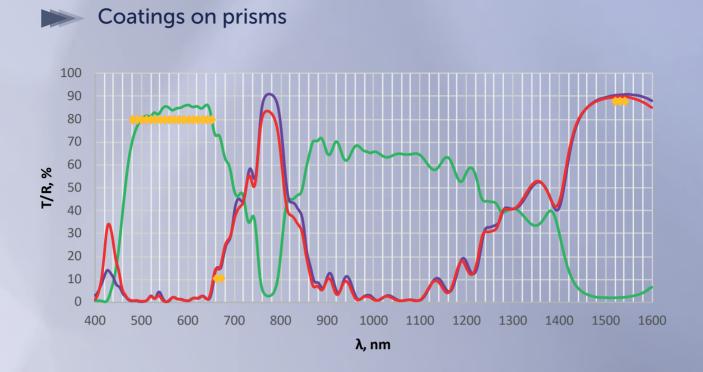

Substrate		Coating	
Material	IG6	2 sides	
Dimensions	Ø1-2 inch	λ=8-12 mkm	Tav=96.01% Rav=1.41%
Thickness	3 <u>+</u> 0.02 mm	Angle	α=0°

Passed test	Test condition	
Humidity	24 Hrs. exposure at RH 95% to 100% at 50°C	
Moderate abrasion	50 strokes cheese cloth at 1 pound force	
Temperature influence	2 Hrs. at –60°C 2 Hrs. at +70°C	
Adhesion	Cellophane tape applied to the coated surface and removed quickly	

BBAR 8-12 um on IG6

Infrared coatings

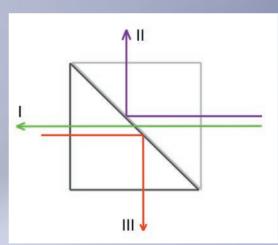
Broad band anti-reflection coating 8 – 12 um on Ge


BBAR 8-12 um on Ge

Substrate		Coating	
Material	Ge	2 sides	
Dimensions	Ø1-2 inch	λ=8-12 mkm	Tav=98.81% Rav=1.41%
Thickness	1 <u>+</u> 0,02 mm	Angle	α=0°

T _____R

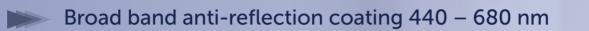
Passed test	Test condition	
Humidity	24 Hrs. exposure at RH 95% to 100% at 50°C	
Moderate abrasion	50 strokes cheese cloth at 1 pound force	
Temperature influence	2 Hrs. at -60°C 2 Hrs. at +70°C	
Adhesion	Cellophane tape applied to the coated surface and removed quickly	

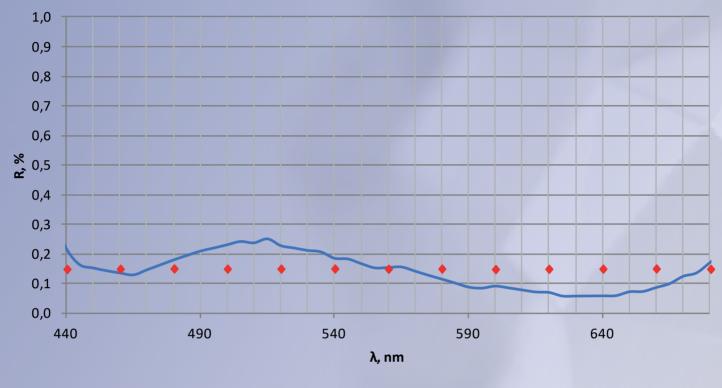

Customized applications

— II Tr, % —

— III Tr, %

I Tr, % 🗕




🔶 target

Direct I	Ta λav > 80%, λ =480-660 nm
Direct II	Ta λmin > 90%, λ =1520-1560 nm
Direct III	Ta λ av > 10%, λ =641-670 nm

Test condition
24 Hrs. exposure at RH 95% to 100% at 50°C
20 strokes eraser with a force of 2 to 2.5 pounds
50 strokes cheesecloth with a force of 1 pound
2 Hrs. at -60°C 2 Hrs. at +70°C
Cellophane tape applied to the coated surface and removed quickly
24 Hrs. salt spray
24 Hrs. immersion in salt water (44.7 gr per liter)
Wavelength shift after about 6 months

Customized applications

Range	440-680 nm
Ra av, %	≤ 0.15 %
Ra max	<u>≤</u> 0.25 %
Substrates	PK52A, BK7, SF2, SF6, etc.

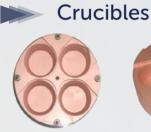
Passed test	Test condition
Humidity	24 Hrs. exposure at RH 95% to 100% at 50°C
Severe abrasion	20 strokes eraser with a force of 2 to 2.5 pounds
Moderate abrasion	50 strokes cheesecloth with a force of 1 pound
Temperature influence	2 Hrs. at -60°C 2 Hrs. at +70°C
Adhesion	Cellophane tape applied to the coated surface and removed quickly
Salt spray (fog)	24 Hrs. salt spray
Salt solubility	24 Hrs. immersion in salt water (44.7 gr per liter)
Aging effect	Wavelength shift after about 6 months

I-Photonics ORTUS® systems

ORTUS® 900

ORTUS® 700

NRTU



System	Dome diameter	Planetary, diameter and qty.
Ortus 700	620 mm	270 mm, 3 pcs.
Ortus 900	800 mm	327 mm, 4 pcs.
Ortus 1100	995 mm	387 mm, 4 pcs.
Ortus 1500	1390 mm	590 mm, 4pcs.

Sizes can be customized

Electron-beam evaporation system

- Integrated design 32mm bore installation
- ▶ 3 different sizes EV M-6, EV M-8, EV M-10
- Operating power: 6KW 12KW
- No water leakage in vacuum chamber (static seal)
- Noise immune optical positioning
- Customized crucibles, 1 ... 12 pockets

4 x 35cc

6 x 40cc - High power - Cooling - 10KW AL

8 x 12cc

1 x 450cc

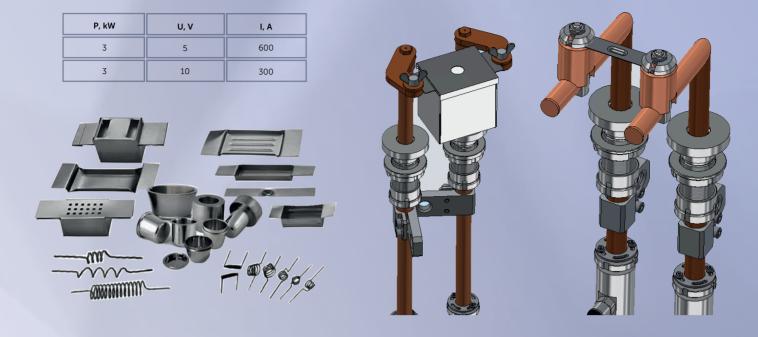
1 x 650cc

Cleaning and assistance system

The COPRA RF-ICP Plasma Beam Source

The COPRA RF-ICP Plasma Beam Technology based on its inductively coupled 13,56 MHz excitation. The sources are working gas independent, reliable and maintenance poor. The Standard COPRA delivers a high ion current (ICD) at constantly low ion energies (IE) which can be easily controlled and adjusted if needed. The customizable design of these COPRA Round Plasma Sources facilitate particle poor thermal stable and stress less etching and deposition. The COPRA Round Plasma Sources (DN-Series) are key components in the precision optics productions and are easily scalable to serve customized dimensional needs.

lon source:	Copra DN251	Copra DN401
Power	3 kW	5 kW
lon energy	30-350 eV	30-350 eV
lon current density	up to 2.5 mA/cm ²	up to 2.5 mA/cm ²
Gas working pressure	1×10 ⁻⁴ 2×10 ⁻² mbar	1×10 ⁻⁴ 2×10 ⁻² mbar
Compensator	No need	No need

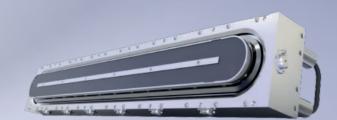

OCP optical monitoring system

OCP SingleWave

OpticEN Proce		Design	Serv	ice Set	ttings												3	🛱 Log Dut 🕼	Import 🔔 🗗	¢.
Design Comp (n control							91.11 _{Value}	62.01 Minimum	91.11 Maximum	76.63 _{Value}							Current	Theoretical apectrum	
	Design thickness	Optical thickness	Chip	Reference wavelength	Final swing	Actual thickness	Material name		and here							1	and the second second	< N		
1	108.21	2.44	1	439.00	49.77	108.23	No205,0409		2	x										
2	164.57	2.44	2	400.00	20.09	164.42	S02_D410_4			X						1				
							Nb205_D405			1						1				l
							SIO2_D410_e									1		1		
						104.40	N6205_D409								- 1					
							Si02_D410_e											1	(
							N6205_D409												/	
							SIO2_D410_e				1									
	95.40			564.00			Nb205_D409				Υ								1	
																			1 . .	
				453.00	47.40	0.00	Nb205_D409							1	r					
														/						
							Nb205_0409													
							Nb205_D409					/								
							\$102_D410_e					X		1						
	104.66			423.00	64.92		Nb205_D409					1)	r						
				631.00	81.40		S02_D410_4					× .	/							
Materia	al			Equipme	int recipe							X	1							
Nh201	6_0409_ellip	pso_table		RecipeA									1							
502	D410_ellipso	o_table		Recipel								and the second	Sector .							
Incide	ence medium	Sul	betrate		Substrate	thickness	Backside													
		waiting. 113																	₩ k2 1 12 至	

Spectral subrange, nm	220-380	220-380 380-1100		1650-2500		
Spectral resolution, nm	0.8	0.8	3.2			
Wavelength accuracy, nm	<u>+</u> 0.2	±0.2	±0.4	±0.8		
Wavelength repeatability, nm	±0.1	±0.1	±0.2	±0.4		
Monitor types	continuous (indi	Intermittent (dire rect by test glass): trans		ackside reflection		
Baseline stability, %	<u>+</u> 0.1%/h	<u>+</u> 0.1%/h	<u>+</u> 0.1%/h <u>+</u> 0.25%/h			
Dark noise, %	±0.01@550nm	<u>+</u> 0.01@550nm	±0.1@1550nm	<u>+</u> 1@2100nm		
Stray light, %	0.3@250nm	0.05@550nm	0.1@1550nm	0.1@2100nm		
Built-in PC						
Light source	Deuterium lamp	Halogen lamp (DC-controlled power supply)				
Detector	Si	Si	IGA	IGA		
Software for thin film design	OptiLayer, IzoSpectra, FilmStar, MS Excel, Essential Macleod					
Data transfer	OPC UA, Modbus TCP/IP Other by request					
Test glass changer	8 positions test glass	changer integrated wi	th 4 position cooled c	quartz crystal changer		

Resistive evaporation system

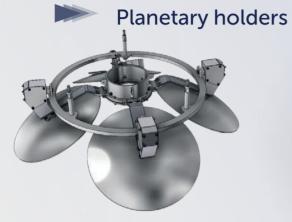


Other options for cleaning and assistance

I-Photonics EHS-50 End-Hall Ion Source

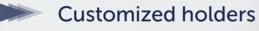
Power	1.2 kW
lon energy	40-180 eV
Gas working pressure	9 × 10 ⁻⁵ to 1.5 × 10 ⁻³ mbar

I-Photonics Linear sources with anode layer accelerator

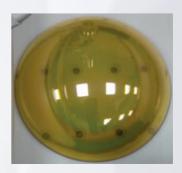

lon energy	40-2000 eV
lon current density	up to 4.2 mA/cm ² (slit length)
Gas working pressure	1.5 × 10 ⁻⁴ to 1 × 10 ⁻² mbar
Compensator	Filament / magnetron

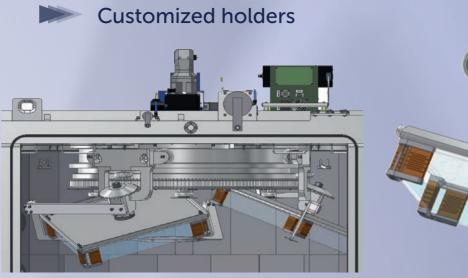
Substrate holders

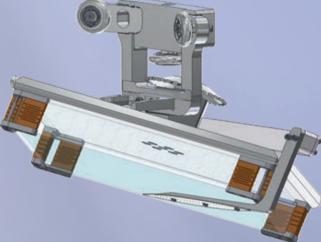
Types of substrate holders:


- Planetary
- Dome
- Customized

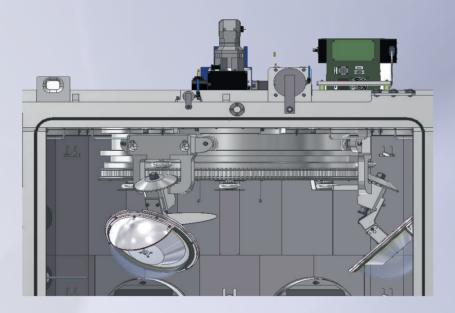
Planetary, ø/pcs	Ortus 700 – 270mm/3pcs. Ortus 900 – 327mm/4pcs. Ortus 1100 – 387mm/4pcs. Ortus 1500 – 590mm/4pcs. Can be customized
Substrates	Lens: 1", 2", 70.76 (3"), 60mm, 80mm, 100mm, 124mm, 200mm Prisms and special substrate: according to customer request
Coatings uniformity on the whole planetary holder	<+/- 1.5%


Dome, ø	Ortus 700 – 620 mm. Ortus 900 – 800 mm. Ortus 1100 – 995 mm. Ortus 1500 – 1390 mm. Can be customized
Substrates	Lens: 1", 2", 70.76 (3"), 60 mm, 80 mm, 100 mm, 124 mm, 200 mm Prisms and special substrate: according to customer request
Coatings uniformity on the whole planetary holder	<+/- 2%





Coater	Ortus 1100
Substrate	ZnS, semisphere Ø151.6 mm, radius of curvature 77 mm, 4 pcs.
Coating	BBAR 8-12 µm, double side
Coating uniformity, %	<+/- 2%



Coater	Ortus 1500
Substrate	K108, 420x420x60 mm, 3 pcs.
Coating	MgF ₂ , SiOX, ZnS, Ta ₂ O ₅ etc.
Coating uniformity, %	<+/- 3%

Customized holders

Coater	Ortus 1500
Substrate	ZnS, semisphere Ø250 mm, radius of curvature 125 mm, 3 pcs.
Coating	BBAR 8-12 µm, double side
Coating uniformity, %	<+/- 10%

I-Photonics UAB Parko g. 3, Avizieniai, Vilniaus raj., 14198, Lithuania Company code: 305907047 VAT number: LT100014457816 E-mail: info@i-photonics.lt Web: www.i-photonics.lt www.i-coatings.lt